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Abstract
Deformation modes are studied for two basal-plane slip systems, [12̄10](0001)

and [1̄010](0001), in ternary-layered Ti2AlC and Ti2AlN ceramics using the
first-principles plane-wave pseudopotential total energy method. Based on
the theoretical stress–strain curves, the [1̄010](0001) slip system leads to
smaller ideal shear strength compared to the [12̄10](0001) mode, implying that
the [1̄010](0001) slip system is predominant to the mechanical properties of
these ternary-layered compounds. Bond-length relaxations are examined for
materials strained from elasticity to structural instability. Interatomic bonds are
demonstrated to respond to shear strain inhomogeneously because of different
bonding strengths. The slips of atomic planes are determined by the failure of
weak Ti–Al bonds. In addition, we predict a polymorphic phase transformation
along the [12̄10](0001) shear deformation path. For the [1̄010](0001) slip
system, in contrast, no polymorphic phase transformation is observed because
TiC slabs do not hold the original NaCl-type structure and, in addition, Al layers
change from a hexagonal to a cubic stacking in the shear deformed lattice. In
other words, the structural units undergo different atomic configurations from
those in the two polymorphs under applied shear strain.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Ternary-layered carbides or nitrides with the general formula Tn+1AXn (where n = 1–3, T
is an early transition metal, A is an A-group element, mostly from groups IIIA and IVA,
and X is either C and/or N) are best described as thermodynamically stable polycrystalline
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ceramics. These compounds are found to exhibit many of the best attributes of both metals and
high-performance ceramics, such as low density, high thermal and electrical conductivities,
good thermal shock resistance and damage tolerance, excellent oxidation resistance, high
elastic stiffness, and easy machinability at room temperature [1]. The unusual combination of
properties makes these ternary ceramics promising candidates for high-temperature structural
applications. Ti2AlC is of particular interest in this family. As the most stable phase in the Ti–
Al–C system, Ti2AlC has a comparatively low density (4.11 g cm−3) compared to other layered
ternary members [2]. The ability to form a protective Al2O3 scale at elevated temperatures
provides Ti2AlC with excellent high-temperature oxidation resistance [3]. With one more
valence electron in the formula, Ti2AlN is elastically stiffer than Ti2AlC without abating other
magnificent attributes [4]4.

As expected from the layered crystal structure with space group P63/mmc, deformations
in Ti2AlC and Ti2AlN are limited by a lack of sufficient easy slip systems (rather than the
five independent slip systems needed for arbitrary deformation) and are quite anisotropic [5].
Transmission electron microscope observations have been performed to study the room-
temperature deformation of macro-grained Ti3SiC2 ceramic [6, 7]. The results showed that
deformation of individual grains included the generation and conservative motions of basal-
plane dislocations with a Burgers vector of 1/3[112̄0]. Therefore, only the basal-plane slip was
favoured in these ternary-layered compounds.

On the (0001) basal plane, slips may be activated in either the [12̄10](0001) or the
[1̄010](0001) direction under different loading conditions. It is still not clear which slip system
is more operative and essential to the mobility of basal-plane dislocations. For the Tn+1AXn

ceramics, an understanding of the basal-plane sliding modes is the key to explaining micro-
scale ductility and plasticity at room temperature. Generally speaking, the very low mobility
of dislocation kinks in covalently bonded materials is determined by the very high bond-
breaking energy under a large shear strain. Furthermore, the bond-breaking energy involved
in plastic deformation and the bond-restoring energy under elastic shear strain essentially go
together in these materials. This reason indicates that the response of well-localized covalent
bonds to shear strain is the crucial factor in determining plasticity. Recent advances in both
computational and methodological capabilities have made it possible to perform an ab initio
calculation on the shear deformation from elasticity to structural instability with reasonable
accuracy; examples include [8–11].

Like the elastic constants, ideal strength is material-specific and can be determined
accurately by first-principles calculations. It defines the upper bound strength that a particular
material can possibly have, and is decided by the limit of structural stability. Nanoindentation
experiments suggested that stress could approach the ideal shear strength in a small volume
under the nanoindenter [12]. The aim of the present work is to investigate the deformation
mechanisms for materials strained from elasticity to structural instability along the two selected
basal-plane slip directions. It is our ambition to reveal the origin of ductility and machinability
of ternary-layered carbides and nitrides.

2. Computational details

Density functional calculations were performed based on the CASTEP [13] code, in which the
plane-wave pseudopotential total energy method was adopted. The interactions between the
core region and valence electrons of the atoms were described by the Vanderbilt-type ultrasoft
pseudopotential [14]. In addition, the electronic exchange–correlation energy was treated using

4 For Ti2AlN, the elastic moduli are calculated in accordance with the same computational method of [4].
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Figure 1. Crystal structure of Ti2AlC, in which the Ti6Al prism is highlighted and connected by
bold bonds. A 2 × 2 × 1 supercell projected onto the (0001) plane is also displayed, with the two
slip directions indicated.

the generalized gradient approximation (GGA-PW91) [15]. The plane-wave basis set cutoff
was chosen as 450 eV for all cases. The numerical integration of the Brillouin zone was
performed using a discrete 10 × 10 × 2 Monkhorst–Pack k-point sampling for equilibrium
structures [16]. A larger number of k-points (12 × 12 × 4) was chosen to sample the Brillouin
zone for those strained unit cells. This choice arose from two reasons: one was the reduced
symmetry of the sheared unit cell, and the other was due to the change of the Brillouin zone
shape. These parameters ensured good convergences of both total energy and geometrical
configurations. The convergence tolerances for the geometry optimization of an unstrained
unit cell were selected with a difference in total energy within 5 × 10−6 eV/atom, a maximum
ionic Hellmann–Feynman force within 0.01 eV Å

−1
, a maximum ionic displacement within

5 × 10−4 Å, and a maximum stress within 0.1 GPa.
In the present study, the ideal stress–strain relationship was obtained by deforming the

crystals from elasticity to structural instability. A series of incremental shear strains in the
[12̄10] or the [1̄010] direction on the (0001) plane were applied to the unit cell under constant-
strain-constraint conditions. To ensure that the unit cell was in a uniaxial stress state, we relaxed
all cell constants and internal degrees of freedom, i.e. internal atomic coordinates, until the
calculated Hellmann–Feynman stresses are less than 0.2 GPa, while constraining the applied
shear strain. The ideal shear strength was defined as the first maximum shear stress achieved
with applied shear strain.

It is necessary to inspect whether a single unit cell is good enough for the convergence of
stress, especially for ideal strength, with respect to the cell dimension. We doubled the cell size
along the c axis and calculated the ideal strengths for a strained 1×1×2 Ti2AlC supercell along
the [12̄10](0001) and [1̄010](0001) directions. The stress differences between the single unit
cell and the 1×1×2 supercell are 0.11 and 0.09 GPa for [12̄10](0001) and [1̄010](0001) shear
modes, respectively. Therefore, good stress convergence was achieved using a single unit cell.

3. Results and discussions

3.1. Basal-plane slip systems

Figures 1(a) and (b) show the Ti2AlC unit cell and a 2 × 2 × 1 supercell projected along
the [0001] direction, respectively. The two slip directions that were studied are indicated
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Figure 2. Calculated shear stresses versus strain along the [12̄10](0001) and [1̄010](0001) slip
systems for (a) Ti2AlC and (b) Ti2AlN. Solid triangles represent data for the [12̄10](0001) slip
system, and empty circles are for [1̄010](0001).

in figure 1(b). The crystal structure of ternary Ti2AlC can be described as NaCl-type Ti2C
slabs being interleaved by close-packed Al atomic planes. Electronic structure investigations
have shown that the coupling between the Ti2C slabs and the Al atomic planes were relative
weak [4, 18–20]. The Ti6Al triangular prism is highlighted by bold bonds in figure 1(a) in order
to analyse the response of Ti–Al bonds to shear deformation conveniently.

Calculated shear stresses at various strains are displayed in figures 2(a) and (b) for Ti2AlC
and Ti2AlN, respectively. Maximum stress is achieved at a strain of around 0.15 for the
[12̄10](0001) shear path and 0.12 for the [1̄010](0001) shear path for Ti2AlC. Material under
the latter shear deformation path undergoes stress relaxation earlier. Furthermore, the ideal
shear strength differs by 3 GPa for the two shear modes studied. The values are 12 and 9 GPa
for the [12̄10](0001) and [1̄010](0001) directions, respectively. Ti2AlN shows similar ideal
stress–strain relationships to Ti2AlC, except for the higher shear strengths. The ideal shear
strengths are 14 and 11 GPa along the [12̄10](0001) and [1̄010](0001) directions, respectively,
as shown in figure 2(b). Comparing the ideal stress–strain relationships of the two competing
strain paths, i.e. along the [12̄10](0001) and [1̄010](0001) directions, the latter strain path leads
more easily to structural instability. Therefore, the ultimate strengths of Ti2AlC and Ti2AlN
should be determined by the lattice stability under the [1̄010](0001) shear deformation.
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Table 1. The internal strain parameter are compared between the [12̄10](0001) and [1̄010](0001)

deformation modes for Ti2AlC under various shear amplitudes. Both Ti–Al and Ti–C bonds are
taken into account.

ζAB at various shear strains

Bonds Slip systems 0.05 0.10 0.12 0.15

[12̄10](0001) −0.317 −0.330 −0.334 −0.352
Ti–Al

[1̄010](0001) −0.336 −0.466 −0.555 −0.755

[12̄10](0001) 0.627 0.687 0.704 0.759
Ti–C

[1̄010](0001) 0.665 0.734 0.800 0.974

Previous investigations revealed that the mechanical properties of Tn+1AXn phases were
determined by the weak T–A bonds. To understand the differences in ideal strengths between
Ti2AlC and Ti2AlN, we studied the changes in Ti–Al bonding strength in these compounds.
A nitrogen atom provides one more valence electron to the Ti6N octahedron in Ti2AlN
compared to the carbon atom in Ti2AlC. If the enhancement of the valence electron density
could strengthen the Ti–Al bonding, the strength of the material can be effectively increased.
Electronic structure analysis showed that the Ti–Al bonding states shift from −2.41 to
−0.04 eV below the Fermi level (EF) in Ti2AlC to lower energy levels, ranging from −3.01
to −0.55 eV below the EF in Ti2AlN. This indicates a strengthening of the Ti–Al bonds, and
thereafter enhances the ideal strengths of Ti2AlN.

In order to better understand the deformation mechanism, we studied the bond-length
relaxations in the shear-deformed lattice. Due to different bonding strengths, inhomogeneous
relaxations of interatomic bonds are investigated quantitatively by the internal displacement
parameter ζ [21], defined by:

ζAB = 1

nAB

nAB∑

i=1

(dAB,i − d∗
AB,i )/(d

◦
AB,i − d∗

AB,i ) (1)

where d◦
AB,i , dAB,i and d∗

AB,i correspond to the bond lengths in the unstrained unit cell and
shear strained unit cells with and without bond-length relaxations, respectively, and nAB is the
number of each type of bond. According to the definition, ζAB = 0 corresponds to the case of
homogeneous deformation; ζAB = 1 implies an ideal rigid bond upon deformation; ζAB > 0
suggests a recovery trend from the applied homogeneous deformation, while ζAB < 0 means
an inhomogeneous relaxation to accommodate deformation.

Table 1 summarizes the calculated ζAB at different shear strains for Ti2AlC. The
ζTi–Al yields a negative value and deviates from zero further under increased shear strain.
This indicates that the Ti–Al bond accommodates the applied shear deformation effectively.
Furthermore, the Ti–Al bond experiences larger relaxation in the [1̄010](0001) shear path
compared to along the other shear direction, as indicated by the larger absolute values of
ζTi–Al. This suggests that the Ti–Al bond sustains larger strain and reaches its limit of structural
stability earlier for strain along the [1̄010] direction. The ζTi–C, on the other hand, has a positive
value, which means a more rigid character of the Ti–C bond. Along the [1̄010](0001) shear
path, the Ti–C bond has larger ζTi–C than that along the [12̄10](0001) shear path. Beyond
the strain yielding maximum stress, i.e. a strain of 0.15, the computed ζTi–C is 0.974 for
the [1̄010](0001) shear mode, which is a value very close to that of an ideal rigid bond.
Therefore, the Ti–C bond recovers rigidly, in contrast to the Ti–Al bond conducting significant
relaxation.
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Figure 3. Configuration changes of a Ti6Al prism. The unstrained substructure is shown in (a),
whereas (b) corresponds to the structure under an applied shear strain of 0.1 for the [12̄10](0001)

shear mode, while (c) is the final relaxed configurations of Ti6Al after removing the constant-shear-
strain constraint. (d) and (e) figures are similar to (b) and (c), except for the [1̄010](0001) shear
modes. The bond lengths in configurations (b) and (d) are listed in table 2.

Table 2. Bond lengths in relaxed Ti6Al prisms under applied 0.1 shear strain for [12̄10](0001) and
[1̄010](0001) shear modes.

Slip systems Bond lengths of Ti–Al (Å)

3.088 (Ti1–Al) 2.767 (Ti2–Al) 2.816 (Ti3–Al)
[12̄10](0001)

2.767 (Ti6–Al) 3.088 (Ti5–Al) 2.816 (Ti4–Al)

2.944 (Ti1–Al) 2.944 (Ti2–Al) 2.761 (Ti3–Al)
[1̄010](0001)

2.796 (Ti6–Al) 2.796 (Ti5–Al) 3.169 (Ti4–Al)

Figure 3 presents the evolution of a Ti6Al trigonal prism under a shear strain of 0.1,
and the corresponding bond lengths are listed in table 2. For an applied homogeneous shear
strain, the Ti6Al prism is distorted by breaking its trigonal symmetry. With respect to energy
minimization, Ti–Al bonds undergo different bond-length relaxations. For the [12̄10](0001)

shear mode, the bond-length relaxations centre on the Ti1–Al and Ti5–Al bonds, as shown
in figure 3(b). In contrast, other Ti–Al bonds change negligibly. Figure 3(d) displays the
optimized structure of the Ti6Al configuration along the [1̄010](0001) shear path. Only the
Ti4–Al bond changes significantly. In figures 3(c) and (e), different coordination for the
Al adjacent to Ti atoms is of the most interest. The Al atom retains its original trigonal
prismatic coordination to Ti in figure 3(c), while it undergoes an octahedral coordination to
Ti in figure 3(e). In the following section we will discuss that only the trigonal prismatic
coordination corresponds to a polymorphic phase transformation along the [12̄10](0001) shear
path. Although the Ti–Al bonds are deformed differently along the two shear paths, a common
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Figure 4. Valence electron density for Ti2AlC at 0.1 shear strain for (a) the (112̄0) planes for
[12̄10](0001) shear mode, and (b) the (12̄10) planes for [1̄010](0001) shear mode. The contour

lines range from 0.073 to 0.173 electrons Å
−3

.

characteristic is addressed as follows: structural instability is determined only by failure of
the Ti–Al bond. Moreover, under the same shear strain of 0.1, the Ti–Al bond stretches to a
larger length, i.e. 3.169 Å, along the [1̄010](0001) strain path than that along the [12̄10](0001)

direction characterized by a value of 3.088 Å. The difference in bond length indicates an easier
bond-breaking event in the [1̄010](0001) strain mode.

Electronic origins of bond relaxation and bond breaking are displayed by the valence
charge densities on the (12̄10) and (112̄0) atomic planes for Ti2AlC under [1̄010](0001)

and [12̄10](0001) deformations, respectively, as shown in figure 4. The valence electron
concentration along the Ti–C bond shows a minor difference for material under the two strains,
indicating that the Ti–C bonding is insensitive to shear deformation. Compared to the stable
Ti–C bond, a weak Ti–Al bond responds more readily to shear strain. As shown in figures 3(b)
and (d), only the significantly stretched Ti–Al bond, instead of all Ti–Al bonds, breaks under
large shear strain. The gradually occurring bond breaking interprets the small critical slip
resistance well in both slip modes. Besides, it can also be concluded that the Ti–Al bond
sustains better stability along the [12̄10](0001) shear path. This is the mechanism of higher
ideal shear strength, as well as the larger critical strain leading to structural instability for the
[12̄10](0001) strain path.

3.2. Polymorphic phase transformation

Using first-principles calculation, Wang et al [17] reported that a polymorphic phase
transformation occurred in Ti3SiC2 under large shear strain. Later, the shear-induced phase
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Figure 5. Crystal structures of the α- and β-Ti2AlC polymorphs.

transformation of Ti3GeC2 was explored in light of theoretical predictions [22]. The crystal
structures of Ti2AlC/Ti2AlN and Ti3SiC2/Ti3GeC2 are rather similar. Ti3SiC2/Ti3GeC2

consists of double layers of distorted edge sharing Ti6C octahedra that are separated by
close-packed Si/Ge atomic planes, and Ti2AlC/Ti2AlN consists of one Ti6C/Ti6N octahedra
layer between two Al atomic planes. It is expected that Ti2AlC/Ti2AlN undergoes the same
polymorphic phase transformation.

In order to study the possible phase transformation, the crystal structure was studied by a
full optimization of the shear-strained unit cell by removing the constant-applied-shear-strain
constraint. It is found that the strained Ti2AlC lattice relaxes back to its equilibrium structure
for a [12̄10](0001) shear strain less than 0.24. In contrast, a new structure with space group
P63/mmc was reached for shear strain larger than 0.24. For comparison, the equilibrium
structure is denoted as α-Ti2AlC and the newly obtained structure is denoted as β-Ti2AlC.
Since the β modification is stable under strain perturbations, its crystal structure corresponds
to a configuration with local minimum energy.

To distinguish the different structural configurations, the h–c notation was used. One
can specify each layer in terms of the orientation of layers above and below it. A layer
is said to be in hexagonal configuration and is denoted as ‘h’ if it is surrounded on either
side by layers in a similar orientation. A layer is said to be in a cubic configuration and is
denoted as ‘c’ if it is surrounded on either side by layers in different orientations. In the
case of α-Ti2AlC, its stacking sequence can be described as ABCAB in terms of the typical
ABC notation. When described in the h–c notation, the stacking sequence can be written
as hccch. The crystal structures of Ti2AlC polymorphs are displayed in figure 5, and the
relevant structural parameters are summarized in table 3. As can be seen from the crystal
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Table 3. Calculated lattice parameters (in Å), total energy difference �E = Eα
total −

Eβ
total (in eV/cell), volume (in Å

3
/cell) and internal coordinates of Al atom for Ti2AlC and Ti2AlN

polymorphs.

Lattice parameters
Wyckoff

Compounds a c c/a �Etotal V position of Al

α-Ti2AlC 3.053 13.638 4.467 — 110.072 (2/3, 1/3, 1/4)
β-Ti2AlC 3.037 13.797 4.543 −0.408 110.236 (0, 0, 1/4)
α-Ti2AlN 2.984 13.503 4.525 — 104.155 (2/3, 1/3, 1/4)
β-Ti2AlN 2.963 13.714 4.628 −0.407 104.244 (0, 0, 1/4)

structure, the polymorphic modification can be addressed by different stacking sequences of
atomic planes along the c axis. In α-Ti2AlC, both Ti and Al atoms are hexagonally stacked.
While in β-Ti2AlC, the Ti atom undergoes a cubic stacking, and Al layers remain the original
hexagonal stacking sequence. The present β modification was isopointal with FeWN2 [23]
and KNbS2 [24]. We are also concerned with the relative structural stability of the two
phases. With respect to its lower total energy, α-Ti2AlC is more stable than the β phase.
The energy difference, i.e. 0.4 eV/unit cell, is rather small between the two polymorphs, and
we expect the predicted β-phase to be identified in a sample synthesized under nonequilibrium
conditions.

When a full optimization was performed on the shear-strained lattice of Ti2AlC along
the [1̄010](0001) path, the coordination environments of Ti, Al and C atoms changed greatly
under the applied shear deformation. The Ti2C slabs do not yield the NaCl-type structure
anymore, and in addition Al layers undergo a transition from a hexagonal to a cubic stacking
in terms of the h–c notation. The structural units show different atomic configurations from
those in the polymorphs. For briefness, only the stacking environment of Al atoms is described
in figure 3. It is believed that a c-stacking does not occur in any of these layered ternary
carbides/nitrides. Once the applied strain takes place along the [1̄010](0001) direction, the
hexagonal stacking configuration changes to a cubic stacking configuration for Al layers,
leading to an octahedral coordination instead of trigonal prismatic coordination, for Al adjacent
to Ti atoms, as illustrated in figure 3(e). As discussed before, the β modification requires
hexagonal stacking for Al layers. Thereafter, the β-phase was not achieved along the [1̄010]
direction.

4. Conclusion

We studied the deformation modes of two possible slip systems, [12̄10](0001) and
[1̄010](0001), for Ti2AlC and Ti2AlN, using the first-principles plane-wave pseudopotential
total energy method. Deformation modes near the limit of structural stability were especially
of concern and were compared for the two slip systems. The ultimate ideal shear strengths are
about 25% and 21% smaller for [1̄010](0001) than those for [12̄10](0001), respectively. The
results suggest that the [1̄010](0001) basal-plane slip system is more active.

Bond-length relaxations were also studied for materials strained from elasticity to
structural instability. The relatively weak Ti–Al bonds are demonstrated to accommodate strain
dominantly when the materials reach the limit of structural stability. In contrast, strong covalent
Ti–C bonds are rigid and insensitive to the applied shear strain. Furthermore, the differences in
ideal shear strengths are interpreted from the stability of weak Ti–Al bonds under the two slip
systems that were studied.
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A polymorphic phase transformation is predicted along the [12̄10](0001) shear path for
Ti2AlC. In contrast, no polymorphic phase transformation is observed for the [1̄010](0001)

shear mode, because the Ti2C slabs do not hold the original NaCl-type structure and, in
addition, Al layers change from hexagonal to cubic stacking in the shear deformed lattice.
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